An Experimental Comparison of PMSPrune and Other Algorithms for Motif Search
نویسندگان
چکیده
A comparative study of the various motif search algorithms is very important for several reasons. For example, we could identify the strengths and weaknesses of each. As a result, we might be able to devise hybrids that will perform better than the individual components. In this paper, we (either directly or indirectly) compare the performance of PMSprune (an algorithm based on the (l, d)-motif model) and several other algorithms in terms of seven measures and using well-established benchmarks. We have employed several benchmark datasets including the one used by Tompa et al. It is observed that both PMSprune and DME (an algorithm based on position-specific score matrices), in general, perform better than the 13 algorithms reported in Tompa et al. Subsequently, we have compared PMSprune and DME on other benchmark datasets including ChIP-Chip, ChIP-Seq and ABS. Between PMSprune and DME, PMSprune performs better than DME on six measures. DME performs better than PMSprune on one measure (namely, specificity).
منابع مشابه
Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملArmentum: a hybrid direct search optimization methodology
Design of experiments (DOE) offers a great deal of benefits to any manufacturing organization, such as characterization of variables and sets the path for the optimization of the levels of these variables (settings) trough the Response surface methodology, leading to process capability improvement, efficiency increase, cost reduction. Unfortunately, the use of these methodologies is very limite...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of bioinformatics research and applications
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2014